

Background

Transcranial Electrical Stimulation (TES)

 Noninvasive therapy that applies low doses of electrical current directly to a patient's head surface

Roger Williams

University

- Utilizes electrodes positioned on scalp with the goal of enhancing neuronal functioning
- Shown to be effective in mitigating symptoms of neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease^[1]

Motivation

- Current TES simulations simply a standard conductivity value for the tissues of the head cavity
- However, these conductivity values can vary within the tissue and between patients
- Incorporating variability may show to be important for TES simulations to accurately predicting electrical current delivery

Research Goal

- Incorporate tissue conductivity stochasticity into TES computational simulations
- Assess the impact of variability in electrical conductivity on patient-specific TES simulation results

Current Results

- Biologically-based variability in skull tissue conductivity impacts TES simulation prediction; the depths of current density into the head cavity are notably affected
- Preliminary results suggest further differences in current density depths due to variability in conductivities of the other cranial tissues
- The skull is known to be a barrier tissue of TES due to its extremely low conductivity that shunts TES energy, thereby effectively shielding brain matter from the TES current density; accurately simulating skull conductivity variability is therefore essential to properly predict current density target locations and saturation depths in computational simulations of TES

Current Progress

- Learning about numerical solution methods for PDEs and the Laplace Equation
- Learning to implement simulations to run TES numerical experiments
- Implementing stochastic simulator through a random number generator based on biological means and standard deviations

References [1] M. A. Nitsche, L. G. Cohen, E. M. Wassermann et al., "Transcranial direct current stimulation: State of the art 2008," Brain Stimulation: State of the art 2008, "Brain Stimulation: State of the art 2008," Brain Stimulation, vol. 1, no. 3, pp. 206–223, 2008 [2] E. T. Dougherty, J. C. Turner, "An Object-Oriented Framework for Versatile Finite Element Based Simulations of Neurostimulation," Journal of Computational Medicine, vol. 2016, ID 9826596. [3] E. T. Dougherty, J. C. Turner, and Frank Vogel, "Multiscale Coupling of Transcranial Electric Field on Neuronal Depolarization," Computational and Mathematical Methods in Medicine, vol. 2014, ID 360179, 2014

Simulations of Transcranial Electrical Stimulation with Variable Tissue Conductivities

Elizabeth Wexler and Edward T. Dougherty Mathematics Department, Roger Williams University

Mathematical Model $\nabla \cdot \mathsf{M} \nabla \Phi = 0,$ $\mathbf{x} \in \Omega$ $\mathbf{n} \cdot \mathsf{M} \nabla \Phi = I(\mathbf{x}), \mathbf{x} \in \partial \Omega_A$ • Boundary conditions for $\mathbf{n} \cdot \mathsf{M} \nabla \Phi = 0, \quad \mathbf{x} \in \partial \Omega_S$ M (S/m) .65 skull 1.6 CSF WM

Progress and Results

Model and Simulations

- Head and brain is viewed as a passive volume conductor
- $\Phi = 0, \quad \mathbf{x} \in \partial \Omega_C \cdot \mathbf{M}$ odels electric potential and electric current
 - anode (+), cathode (ground), and remainder of scalp

Simulation Domain

• Weak Formulation:

Find
$$\Phi \in H$$
$$\int_{\Omega} \nabla v$$

where

$$H_0^1(\Omega)$$

$$H^1(\Omega)$$

and

 $L_2(\Omega)$

- results

Implementation

• Finite Element Method: Numerical Method to Solve PDE

 $H_0^1(\Omega)$ such that $\cdot \mathbf{M} \nabla \Phi \, dx = \int vI \, ds \quad \forall \, v \in H^1_0(\Omega),$

 $= \{ u \mid u \in H^1(\Omega), u = 0 \forall \vec{x} \in \partial \Omega_C \},\$ $= \{ u \mid u \in L_2(\Omega), \frac{\partial u}{\partial x_i} \in L_2(\Omega) \}, \ i = 1, ..., d,$

$$= \{ p \mid \int_{\Omega} |p|^2 dx < \infty \}.$$

Computational Tools

FEniCS (Python)- Used for computing partial differential equations using the finite element method for circle

Gmsh-Used to create the computational domains **Paraview**- Used for visualization

Next Steps simulations with variable skull conductivity values simulations, with variability in all brain tissue conductivity Skull M = **0.1** 3. Migrate stochastic code to MRI-derived head geometry 4. Identify distinct, disease specific, configurations for PDE system boundary Skull M = **0.4**